ÃÑ 4558ÆäÀÌÁö

4556ÆäÀÌÁö º»¹®½ÃÀÛ

8. Chakroun, N., et al., Decrypting Prion Protein Conversion into a beta-Rich
Conformer by Molecular Dynamics. J Chem Theory Comput, 2013. 9(5): p.
2455-2465.
9. Huang, D. and A. Caflisch, Evolutionary conserved Tyr169 stabilizes the
beta2-alpha2 loop of the prion protein. J Am Chem Soc, 2015. 137(8): p. 2948-57.
10. Chen, W., M.W. van der Kamp, and V. Daggett, Structural and dynamic properties
of the human prion protein. Biophys J, 2014. 106(5): p. 1152-63.
11. Hosokawa-Muto, J., et al., Variety of antiprion compounds discovered through an in
silico screen based on cellular-form prion protein structure: Correlation between
antiprion activity and binding affinity. Antimicrob Agents Chemother, 2009. 53(2): p.
765-71.
12. Ishikawa, T., T. Ishikura, and K. Kuwata, Theoretical study of the prion protein
based on the fragment molecular orbital method. J Comput Chem, 2009. 30(16): p.
2594-601.
13. Tatzel Abskharon, R.N., et al., Probing the N-terminal beta-sheet conversion in the
crystal structure of the human prion protein bound to a nanobody. J Am Chem
Soc, 2014. 136(3): p. 937-44.
14. M.J. Abraham, D.v.d.S., E. Lindahl, B. Hess s, and the GROMACS development
team, GROMACS User Manual version 5.0.6. www.gromacs.org, 2015.
Á¦8Àå ÷ºÎ¼­·ù
4556
³ó¸²Ãà»ê°Ë¿ªº»ºÎ

4556ÆäÀÌÁö º»¹®³¡



ÇöÀç Æ÷Ä¿½ºÀÇ ¾Æ·¡³»¿ëµéÀº µ¿ÀÏÇÑ ÄÁÅÙÃ÷¸¦ °¡Áö°í ÆäÀÌÁö³Ñ±è È¿°ú¹× ½Ã°¢Àû È¿°ú¸¦ Á¦°øÇÏ´Â ÆäÀÌÁöÀ̹ǷΠ½ºÅ©¸°¸®´õ »ç¿ëÀÚ´Â ¿©±â±îÁö¸¸ ³¶µ¶ÇϽðí À§ÀÇ ÆäÀÌÁöÀ̵¿ ¸µÅ©¸¦ »ç¿ëÇÏ¿© ´ÙÀ½ÆäÀÌÁö·Î À̵¿ÇϽñ⠹ٶø´Ï´Ù.
»ó´Ü¸Þ´º ¹Ù·Î°¡±â ´ÜÃàÅ°¾È³» : ÀÌÀüÆäÀÌÁö´Â ÁÂÃø¹æÇâÅ°, ´ÙÀ½ÆäÀÌÁö´Â ¿ìÃø¹æÇâÅ°, ùÆäÀÌÁö´Â »ó´Ü¹æÇâÅ°, ¸¶Áö¸·ÆäÀÌÁö´Â ÇϴܹæÇâÅ°, ÁÂÃøÈ®´ëÃà¼Ò´Â insertÅ°, ¿ìÃøÈ®´ëÃà¼Ò´Â deleteÅ°